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In Ref. 1 �later on referred to as Engheta’s paper�, Eng-
heta studied the dispersion relation of a one-dimensional
�1D� cavity resonator with electrically perfectly conducting
walls �mirrors� and in between two slabs of dielectrics whose
permittivity, permeability, and refractive index are �1, �1,
and n1 and �2, �2, and n2, respectively, as we see in Fig. 1.
The dispersion relation is, as derived in Engheta’s paper and
cited in Ref. 2 �later on referred to as Shen’s paper�,

tan�n1kd1�
tan�n2kd2�

= −
n1�2

n2�1
, �1�

where k is the wave number in free space. When both of the
slabs are made of conventional dielectrics, the dispersion re-
lation gives no solution when the size of the cavity is much
smaller than the operating wavelength, as has been known
for many years. The major contribution in Engheta’s paper is
to point out that when one of the slabs is made of a metama-
terial with negative permittivity and negative permeability
�thus a sufficient condition for a negative refractive index�,
the dispersion relation Eq. �1� has a solution for a cavity of
deep subwavelength size. Furthermore, Engheta shows that
when the size of the cavity is very small, the solution should
satisfy

d1

d2
� −

�2

�1
. �2�

The effectiveness and precision of the former equation
were questioned in Shen’s paper. After some relatively com-
plicated mathematical transforms, the authors concluded that
d1 /d2 would be strictly equal to −�2 /�1 only when the im-
pedances of the two layers were matched. While for a gen-
eral case when the impedances are not matched, d1 /d2 devi-
ates obviously from −�2 /�1, as shown in Fig. 2�a� of Shen’s
paper.

Although we basically agree with the numerical results
shown in Fig. 2�a� of Shen’s paper, we have very different
interpretations of it. In fact, this figure gives the deviation of
d1 /d2 from −�2 /�1 �which is �̄−1 in the figure� of cavity
compactness �N� for different impedance-matching situation
�different �̂=−�2 /�1, since �̂=−�2 /�1 is assumed�. It can be
noticed that even for the worst case shown in the figure ��̂
=4,N=10�, we still have d1 /d2 / �−�2 /�1�=1.1, not severely
deviated from 1. It is true that the deviation of d1 /d2 /
�−�2 /�1� from 1 has “orders of magnitude change” when the
impedance mismatch changes, as pointed out in their text

and emphasized by the logarithmic plot of Fig. 2�a� in Shen’s
paper. However, they are all small values with different or-
ders. After all, Eq. �2� is satisfied in an approximate sense
and is a deduction from the strict dispersion relation Eq. �1�.
The purpose of Eq. �2� is to show the obvious difference
between a conventional cavity and the one with metamate-
rial, rather than to be used for resonating frequency calcula-
tion.

To argue whether 0.1 is a small value or not gives no
physical significance, thus in the text below we give an ana-
lytical formula connecting d2 /d1 with �1 /�2 in a manner
more precise than that of Eq. �2�. Considering a given
metamaterial design and at a given operating frequency, we
try to design the geometry of the cavity so that it resonates.
Mathematically this is to fix n1, �1, n2, �2, and k, and search
for d1 and d2 that satisfy Eq. �1�. From Eq. �1� we can have

d2 =
1

n2k
�tan−1�� tan�n1kd1�� + m�� , �3�

where �=−n2�1 /n1�2 and m is an integer. Notice that in
order to achieve Eq. �3� we make no approximation, and it is
valid either when both the two slabs are conventional dielec-
trics or when one of them is a metamaterial. Equation �3�
connects the thickness of the second slab to the thickness of
the first slab in order for the structure to resonate at the given
frequency. At this point, it is easy to see that when both slabs
are conventional dielectrics �i.e., n1,2�0 and �1,2�0, �
�0�, for small enough d1, tan−1�� tan�n1kd1���0, the small-
est possible d2 is achieved for m=1, implying that the total
size of the cavity is comparable to the wavelength. However,
when n1�0, �1�0 and n2�0, �2�0, we still have ��0.
Under this condition, for arbitrarily small d1,
tan−1�� tan�n1kd1�� / �n2k��0. Thus the smallest solution of
d2 for Eq. �3� is achieved for m=0, which gives a resonating
cavity of subwavelength total size. This is the major conclu-
sion given in Engheta’s paper.

FIG. 1. The 1D subwavelength cavity considered in Refs. 1 and
2.
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When kd1 is small, the tan−1�·� function can be expanded
into Taylor series, thus Eq. �3� gives �notice m=0�

d2 =
n1

n2
�d1 +

� − �3

3

n1
3

n2k
�kd1�3 + O�kd1�5, �4�

so we can get

d2

d1
= −

�1

�2
+

� − �3

3

n1
3

n2
�kd1�2 + O�kd1�4. �5�

The equation above is an extension of Eq. �2� with higher
precision. It is obvious now that when kd1 is small, d2 /d1 is
different from −�1 /�2 by a small quantity of order �kd1�2,
while other parameters �the impedances, the relative permit-
tivity, and permeability, etc.,� only influence the constants in
front of �kd1�2. Notice that the equation above gives basically
the same information as Eq. �6� in Shen’s paper, but we
believe in a more straightforward way. The discussion in
Shen’s paper indeed correctly revealed the difference be-
tween d1 /d2 and −�2 /�1 in the sense of the exact quantity.
However, we would like to point out that such difference is
the terms of �kd1�2 and higher orders in Eq. �5�, and will
vanish quickly as the size of the cavity decreases further.
Based on the analysis above, we can see that Eq. �2� is in-
deed valid in the approximate sense, and reveals an impor-
tant property of such a cavity that deserves great attention.

In the next part of Shen’s paper the stability of such a
subwavelength cavity is discussed, and the cavity is called
unstable if the derivatives of the relative resonant frequency
shift with respect to some design parameters shows any sin-
gular behavior. Such a definition of stability is, however, not
compatible with the definition in some existing references
e.g., Ref. 3 where the stability is tied to the quality factor of
the resonator. A more appropriate term for the resonant fre-
quency variation with cavity parameters is “resonant fre-
quency tolerance.” However, we will still use the term “sta-
bility” in the rest of the discussion in the sense as that in
Shen’s paper. It is found in Shen’s paper that the cavity can-
not be stable when the impedances of the two slabs are
matched, which we do not agree to. In the following, we
study the stability of this structure with much simpler math-
ematics. We show that the necessary frequency dispersion of

the metamaterial cannot be neglected in this discussion, and
we show that there is no intrinsic instability issue for this
structure, whether the impedances are matched or not.

The design parameters of such a cavity include d1, d2, n1,
and �1, and the properties of the metamaterial which are
determined by its own design parameters. Since these design
parameters are independent of each other, we can study the
change in the resonant frequency as a function of the pertur-
bation of each parameter respectively, with all the others
fixed as constants at the time. Suppose we first study the
change in the resonant frequency vs change in d2. From Eq.
�1�, we have tan�n1kd1�=−�2 tan�n2kd2� /�1 where �1,2
=��1,2 /�1,2�0. If we take the full derivative of this equa-
tion, after some simple mathematics we have,

	 n1d1

cos2�n1kd1�
+

�2

�1

n2d2

cos2�n2kd2�
	k = −
�2

�1

n2k

cos2�n2kd2�
	d2.

�6�

Notice when deriving Eq. �6� the temporal dispersion of the
metamaterial is neglected. This is also the assumption in
Shen’s paper when discussing the stability issue. This as-
sumption may be effective, since for a small perturbation of
the design parameter the change in the resonant frequency
may also be small. However, such an assumption should al-
ways be carefully examined, as we will show later.

From Eq. �6�, we notice that the stability of the cavity
resonator is in general good except for the impedance-
matched case, for which we have n1d1=−n2d2 and �1=�2.
For this case, the coefficient of 	k is zero, thus 	k diverges
for any perturbation in d2. We see that for the impedance-
matched case our Eq. �6� gives the same conclusion as their
analysis when we use the same assumption �dispersionless
metamaterial�, but with much simpler mathematics. In fact,
there is an intuitive explanation to this phenomenon. When
the impedance of the two slabs inside the cavity is matched,
the resonant condition simplifies so that the round trip of the
wave inside the cavity gives 2m� phase delay, or k�n1d1
+n2d2�=m�. When both slabs are conventional dielectrics,
for the smallest resonating cavity we have m=1, and when d2
deviates above/below the designed value, the phase delay
condition can still be satisfied if only the operating wave-
length decreases/increases to a comparable amount, which
means the cavity is stable. However, if one of the slab is a
disperseless metamaterial with n2�0, for the smallest reso-
nating cavity we have m=0, thus for any small change in d2
from the designed value, the round trip phase delay is 2k	d2
�notice we are assuming that the metamaterial is disperse-
less�, and the phase condition of the resonator cannot be
satisfied unless 2k	d2 equals nonzero integral times of �, at
which the cavity is resonating at a high-order mode. In other
words, any small change in d2 destroys the lowest-resonating
mode for which the cavity size is small compared to the
wavelength, if we assume the metamaterial is dispersionless.

However, the dispersionless assumption for metamaterials
should always be examined carefully especially when some
extreme phenomenon happens. For the impedance-matched
case in Eq. �6�, k changes a lot for a small perturbation of d2,
indicating that the material dispersion should be taken into

FIG. 2. �r2, �r2, and n2 and �2 /�0 vs frequency.
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account. Suppose slab 1 is a conventional dielectric while
slab 2 is a metamaterial, and we again take the full deriva-
tives of tan�n1kd1�=−�2 tan�n2kd2� /�1, but this time we re-
tain the terms of 	n2 and 	�2, and relate them to 	k through
the dispersion property of �2 and �2, then we have

� n1d1

cos2�n1kd1�
+

�2

�1

n2d2

cos2�n2kd2�
+

�2

2�1

n2kd2

cos2�n2kd2�
	�2�

�2
+

�2�

�2



+
�2

2�1
tan�n2kd2�	�2�

�2
−

�2�

�2

�	k = −

�2

�1

n2k

cos2�n2kd2�
	d2,

�7�

where �2� and �2� are the derivatives of �2 and �2 with respect
to k, and when they are set to zero, Eq. �7� is the same as Eq.
�6�. The expressions for the stability due to the perturbation
of other parameters are similar to that of Eq. �7�. In fact, the
coefficient of 	k is the same, but only the right-hand side
�RHS� is different for different parameters. Thus the singu-
larity �if there are any� property of 	k will be similar for
different design parameters. From Eq. �7� we can see that the
change in the resonance frequency for any given perturba-
tions in d2 �or other parameters which can be discussed simi-
larly� is indeed influenced by the frequency property of �2
and �2, and there is no intrinsic singular point for 	k. Spe-
cifically, the singularity in Eq. �6� for the impedance-
matched case disappears in Eq. �7� due to the material dis-
persion.

We give some numerical examples in the following. Con-
sidering a cavity with the first slab, the free space ��1=�0,
�1=�0, n1=1, and �1=�0�, and the second slab, a metama-
terial with the effective constitutive parameters can described
by Drude �or Drude-Lorentz� model as

�2 = �0	1 −
kp

2

k2
 ,

�2 = �0	1 −
Fk2

k2 − k0
2
 , �8�

with F=0.1257 and kp=1.8k0. In reality, such a metamaterial
is realized in radio frequency domain by combining the me-
tallic wire medium and the split ring resonators.4–6 The rela-
tive permittivity and relative permeability as a function of
frequency is shown in Fig. 2, together with the impedance
�normalized to the free space impedance �0� and refractive
index in the frequency band when both the permittivity and
the permeability are negative. We can design the thickness of
the two slabs so that the cavity resonates at a given operating
frequency, and here we consider two cases. For one, the op-
erating frequency is k=k1=1.021k0 when �r2=�r2=−2.109
and �2=�1=�0 �the impedance-matched case�, and for the
other k=k2=1.033k0 when �r2=−1, �2=0.701�0. For any
given d1, we determine d2 from Eq. �3� with m=0, and the
results for the two cases are shown in Fig. 3 as solid lines.
Notice that here we plot the size relative to the operating
wavelength �
1,2 for k1 or k2� is plot. The dashed lines in the
figure are −�1d1 /�2, and are for comparison purpose. From
this we can see that the relation of d1 and d2 converges to Eq.
�2� when the size of the cavity is much smaller than the

operating wavelength. Specifically, for the impedance-
matched case, d2 /d1 is strictly equal to −�1 /�2 for any given
d1. It is interesting to point out that, since n2 is relatively
small �n2=−2.109, −1.427 for the two cases, respectively�,
Fig. 3 also indicates that the cavity is “electrically small,”
i.e., n1d1+ n2d2�
1,2. This is not possible when conven-
tional dielectrics are used, even with materials of large re-
fractive index.

In the former paragraph we designed the size of the cavity
for given operating frequencies. It is interesting to see the
real “frequency dispersion” of such type of cavities. To do
this, we rewrite the dispersion equation Eq. �1� as

�1 tan�n1kd1� = − �2 tan�n2kd2� �9�

and we plot the value of the left- and right-hand side as k
varies, for given cavity geometry designs �d1 and d2�, as we
see in Fig. 4. Here the sizes of d1 and d2 are given in 
0
=2� /k0, where k0 is a constant used in the metamaterial
design ��Eq. �8��. Obviously, the two crosses actually indi-
cate two cavity designs that resonate at different frequencies,

FIG. 3. Value of d2 for given d1 when resonating at a certain
operating frequency, normalized to the operating wavelength, re-
spectively. Bold: k=k1, Light: k=k2.

FIG. 4. Solid: the left-hand side of Eq. �9�, d1=9.80�10−3
0;
dashed: the RHS of Eq. �9�, for d2=4.64�10−3
0; dotted: the right-
hand side of Eq. �9�, for d2=9.78�10−3
0.
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both of which are electrically small, which can be easily
tested.

The sensitivity of the operating frequency to the variation
in d2 can be calculated from Eq. �7� when we have the fre-
quency parameters of the metamaterial. Consider the specific
cases when d1=0.1
1,2 for the two design cases. From Eq.
�7� we have 	k /k=0.016	d2 /d2 for the cavity resonating at
k1, and 	k /k=0.021	d2 /d2 for the cavity resonating at k2.
The relative change in the operating frequency is even much
smaller than that of d2, due to the obvious dispersion of the
metamaterial. The value of 	k /k for different d2 deviations is
shown in Fig. 5. To achieve this figure, the resonating fre-
quency for any d2 deviating from the desired value is calcu-
lated from Eq. �1� numerically with the dispersion property
of n2 and �2 taken into account, from which we get 	k /k.

We can see that the cavities are indeed quite stable for the
design we proposed here.

The rest of Shen’s paper discuss the quality factor of such
a cavity when material loss in the metamaterial exists. We
have no comments for this part.

In the former discussion the only assumptions are that the
metamaterial is lossless and spatially uniform, which are the
same assumptions used in Engheta’s paper and in Shen’s
paper. It is true that the unit cells of the metamaterials de-
signed and fabricated so far are still not small enough to
allow the metamaterials to be treated rigorously as homoge-
neous materials. However, cavity miniaturization using dis-
crete metamaterial inclusions prompted by this idea were
demonstrated,7 which justify the value of this idea. In con-
clusion, the solution of the dispersion relation of a 1D cavity
considered by Engheta in Ref. 1 indeed approaches Eq. �2�
as the size decreases. The difference is of second-order small
value �kd1�2. The temporal dispersion of the metamaterial
cannot be neglected when discussing the stability of the so-
lution and they are in general stable. The general results in
Engheta’s paper, confirmed by this comment, could have sig-
nificant practical implications for making subwavelength
resonators.

During the preparation of this manuscript we exchanged
opinions constructively with the authors of the paper com-
mented here. We appreciate very much their open-minded
discussions.
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FIG. 5. 	k /k vs 	d2 /d2, indicating the stability of the cavity.

COMMENTS PHYSICAL REVIEW B 79, 207101 �2009�

207101-4


